Topic:Image Quality Assessment
What is Image Quality Assessment? Image-quality assessment is the process of evaluating the quality of an image based on perceptual or objective metrics.
Papers and Code
Jan 21, 2025
Abstract:In spite of the recent progress, image diffusion models still produce artifacts. A common solution is to refine an established model with a quality assessment system, which generally rates an image in its entirety. In this work, we believe problem-solving starts with identification, yielding the request that the model should be aware of not just the presence of defects in an image, but their specific locations. Motivated by this, we propose DiffDoctor, a two-stage pipeline to assist image diffusion models in generating fewer artifacts. Concretely, the first stage targets developing a robust artifact detector, for which we collect a dataset of over 1M flawed synthesized images and set up an efficient human-in-the-loop annotation process, incorporating a carefully designed class-balance strategy. The learned artifact detector is then involved in the second stage to tune the diffusion model through assigning a per-pixel confidence map for each synthesis. Extensive experiments on text-to-image diffusion models demonstrate the effectiveness of our artifact detector as well as the soundness of our diagnose-then-treat design.
* 8 pages of main body and 2 pages of references, 9 figures, 2 tables
Via
Jan 20, 2025
Abstract:As an affordable and convenient eye scan, fundus photography holds the potential for preventing vision impairment, especially in resource-limited regions. However, fundus image degradation is common under intricate imaging environments, impacting following diagnosis and treatment. Consequently, image quality assessment (IQA) and enhancement (IQE) are essential for ensuring the clinical value and reliability of fundus images. While existing reviews offer some overview of this field, a comprehensive analysis of the interplay between IQA and IQE, along with their clinical deployment challenges, is lacking. This paper addresses this gap by providing a thorough review of fundus IQA and IQE algorithms, research advancements, and practical applications. We outline the fundamentals of the fundus photography imaging system and the associated interferences, and then systematically summarize the paradigms in fundus IQA and IQE. Furthermore, we discuss the practical challenges and solutions in deploying IQA and IQE, as well as offer insights into potential future research directions.
Via
Jan 20, 2025
Abstract:Omnidirectional image quality assessment (OIQA) has been widely investigated in the past few years and achieved much success. However, most of existing studies are dedicated to solve the uniform distortion problem in OIQA, which has a natural gap with the non-uniform distortion problem, and their ability in capturing non-uniform distortion is far from satisfactory. To narrow this gap, in this paper, we propose a multitask auxiliary network for non-uniformly distorted omnidirectional images, where the parameters are optimized by jointly training the main task and other auxiliary tasks. The proposed network mainly consists of three parts: a backbone for extracting multiscale features from the viewport sequence, a multitask feature selection module for dynamically allocating specific features to different tasks, and auxiliary sub-networks for guiding the proposed model to capture local distortion and global quality change. Extensive experiments conducted on two large-scale OIQA databases demonstrate that the proposed model outperforms other state-of-the-art OIQA metrics, and these auxiliary sub-networks contribute to improve the performance of the proposed model. The source code is available at https://github.com/RJL2000/MTAOIQA.
Via
Jan 20, 2025
Abstract:With the rapid advancement of Multi-modal Large Language Models (MLLMs), MLLM-based Image Quality Assessment (IQA) methods have shown promising performance in linguistic quality description. However, current methods still fall short in accurately scoring image quality. In this work, we aim to leverage MLLMs to regress accurate quality scores. A key challenge is that the quality score is inherently continuous, typically modeled as a Gaussian distribution, whereas MLLMs generate discrete token outputs. This mismatch necessitates score discretization. Previous approaches discretize the mean score into a one-hot label, resulting in information loss and failing to capture inter-image relationships. We propose a distribution-based approach that discretizes the score distribution into a soft label. This method preserves the characteristics of the score distribution, achieving high accuracy and maintaining inter-image relationships. Moreover, to address dataset variation, where different IQA datasets exhibit various distributions, we introduce a fidelity loss based on Thurstone's model. This loss captures intra-dataset relationships, facilitating co-training across multiple IQA datasets. With these designs, we develop the distribution-based Depicted image Quality Assessment model for Score regression (DeQA-Score). Experiments across multiple benchmarks show that DeQA-Score stably outperforms baselines in score regression. Also, DeQA-Score can predict the score distribution that closely aligns with human annotations. Codes and model weights have been released in https://depictqa.github.io/deqa-score/.
Via
Jan 20, 2025
Abstract:Racial bias in medicine, particularly in dermatology, presents significant ethical and clinical challenges. It often results from the underrepresentation of darker skin tones in training datasets for machine learning models. While efforts to address bias in dermatology have focused on improving dataset diversity and mitigating disparities in discriminative models, the impact of racial bias on generative models remains underexplored. Generative models, such as Variational Autoencoders (VAEs), are increasingly used in healthcare applications, yet their fairness across diverse skin tones is currently not well understood. In this study, we evaluate the fairness of generative models in clinical dermatology with respect to racial bias. For this purpose, we first train a VAE with a perceptual loss to generate and reconstruct high-quality skin images across different skin tones. We utilize the Fitzpatrick17k dataset to examine how racial bias influences the representation and performance of these models. Our findings indicate that the VAE is influenced by the diversity of skin tones in the training dataset, with better performance observed for lighter skin tones. Additionally, the uncertainty estimates produced by the VAE are ineffective in assessing the model's fairness. These results highlight the need for improved uncertainty quantification mechanisms to detect and address racial bias in generative models for trustworthy healthcare technologies.
* Under review
Via
Jan 17, 2025
Abstract:Current image tokenization methods require a large number of tokens to capture the information contained within images. Although the amount of information varies across images, most image tokenizers only support fixed-length tokenization, leading to inefficiency in token allocation. In this study, we introduce One-D-Piece, a discrete image tokenizer designed for variable-length tokenization, achieving quality-controllable mechanism. To enable variable compression rate, we introduce a simple but effective regularization mechanism named "Tail Token Drop" into discrete one-dimensional image tokenizers. This method encourages critical information to concentrate at the head of the token sequence, enabling support of variadic tokenization, while preserving state-of-the-art reconstruction quality. We evaluate our tokenizer across multiple reconstruction quality metrics and find that it delivers significantly better perceptual quality than existing quality-controllable compression methods, including JPEG and WebP, at smaller byte sizes. Furthermore, we assess our tokenizer on various downstream computer vision tasks, including image classification, object detection, semantic segmentation, and depth estimation, confirming its adaptability to numerous applications compared to other variable-rate methods. Our approach demonstrates the versatility of variable-length discrete image tokenization, establishing a new paradigm in both compression efficiency and reconstruction performance. Finally, we validate the effectiveness of tail token drop via detailed analysis of tokenizers.
Via
Jan 14, 2025
Abstract:Face image quality assessment (FIQA) algorithms are being integrated into online identity management applications. These applications allow users to upload a face image as part of their document issuance process, where the image is then run through a quality assessment process to make sure it meets the quality and compliance requirements. Concerns about demographic bias have been raised about biometric systems, given the societal implications this may cause. It is therefore important that demographic variability in FIQA algorithms is assessed such that mitigation measures can be created. In this work, we study the demographic variability of all face image quality measures included in the ISO/IEC 29794-5 international standard across three demographic variables: age, gender, and skin tone. The results are rather promising and show no clear bias toward any specific demographic group for most measures. Only two quality measures are found to have considerable variations in their outcomes for different groups on the skin tone variable.
* 2024 International Conference of the Biometrics Special Interest
Group (BIOSIG)
Via
Jan 13, 2025
Abstract:Fair operational systems are crucial in gaining and maintaining society's trust in face recognition systems (FRS). FRS start with capturing an image and assessing its quality before using it further for enrollment or verification. Fair Face Image Quality Assessment (FIQA) schemes therefore become equally important in the context of fair FRS. This work examines the sclera as a quality assessment region for obtaining a fair FIQA. The sclera region is agnostic to demographic variations and skin colour for assessing the quality of a face image. We analyze three skin tone related ISO/IEC face image quality assessment measures and assess the sclera region as an alternative area for assessing FIQ. Our analysis of the face dataset of individuals from different demographic groups representing different skin tones indicates sclera as an alternative to measure dynamic range, over- and under-exposure of face using sclera region alone. The sclera region being agnostic to skin tone, i.e., demographic factors, provides equal utility as a fair FIQA as shown by our Error-vs-Discard Characteristic (EDC) curve analysis.
* 2024 12th International Workshop on Biometrics and Forensics
(IWBF)
Via
Jan 16, 2025
Abstract:Medical imaging systems are commonly assessed and optimized by the use of objective measures of image quality (IQ). The performance of the ideal observer (IO) acting on imaging measurements has long been advocated as a figure-of-merit to guide the optimization of imaging systems. For computed imaging systems, the performance of the IO acting on imaging measurements also sets an upper bound on task-performance that no image reconstruction method can transcend. As such, estimation of IO performance can provide valuable guidance when designing under-sampled data-acquisition techniques by enabling the identification of designs that will not permit the reconstruction of diagnostically inappropriate images for a specified task - no matter how advanced the reconstruction method is or how plausible the reconstructed images appear. The need for such analysis is urgent because of the substantial increase of medical device submissions on deep learning-based image reconstruction methods and the fact that they may produce clean images disguising the potential loss of diagnostic information when data is aggressively under-sampled. Recently, convolutional neural network (CNN) approximated IOs (CNN-IOs) was investigated for estimating the performance of data space IOs to establish task-based performance bounds for image reconstruction, under an X-ray computed tomographic (CT) context. In this work, the application of such data space CNN-IO analysis to multi-coil magnetic resonance imaging (MRI) systems has been explored. This study utilized stylized multi-coil sensitivity encoding (SENSE) MRI systems and deep-generated stochastic brain models to demonstrate the approach. Signal-known-statistically and background-known-statistically (SKS/BKS) binary signal detection tasks were selected to study the impact of different acceleration factors on the data space IO performance.
* 4 pages
Via
Jan 13, 2025
Abstract:A face image is a mandatory part of ID and travel documents. Obtaining high-quality face images when issuing such documents is crucial for both human examiners and automated face recognition systems. In several international standards, face image quality requirements are intricate and defined in detail. Identifying and understanding non-compliance or defects in the submitted face images is crucial for both issuing authorities and applicants. In this work, we introduce FaceOracle, an LLM-powered AI assistant that helps its users analyze a face image in a natural conversational manner using standard compliant algorithms. Leveraging the power of LLMs, users can get explanations of various face image quality concepts as well as interpret the outcome of face image quality assessment (FIQA) algorithms. We implement a proof-of-concept that demonstrates how experts at an issuing authority could integrate FaceOracle into their workflow to analyze, understand, and communicate their decisions more efficiently, resulting in enhanced productivity.
* ECCV 2024 Workshops
Via